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Abstract—Procrastination is a prevalent form of self-control
failure. As it often concerns with the individual’s ability to
meet the deadline, an efficient time management is crucial
for overcoming it. Though a considerable amount of work in
behavioral economics provides useful insights, there is not a
computational way to guide us how to obtain an appropriate
schedule for all the things to be done, especially when the
relationship of the deadlines is intrinsic. In this paper, we first
propose the Procrastination-aware Scheduling Problem (PSP) to
model an appropriate schedule. A bipartite graph formulation
is then developed to further illustrate the concepts. We find the
PSP is NP-hard in the strong sense and design an approximation
algorithm. In addition, we note the significance of the PSP under
the online scenario (called OnlinePSP). Finally, we verify the
effectiveness and efficiency of the proposed algorithms through
extensive experiments on real datasets.

I. INTRODUCTION

Procrastination, the tendency to put off things and dally

with some distractions, is all familiar to most people. It is

extremely prevalent and pernicious. For example, students

may delay their assignments until the deadlines and get poor

grades. Employees who postpone their unpleasant tasks affect

the progress of a project. Some patients even suffer from

unexpected diseases because of not sticking to the medical

check-ups.

These bad consequences are always related to inefficient

time management. It is observed that chronic procrastinators

spend less time on projects which are more likely to suc-

ceed [1], start the tasks intended to be finished earlier at the

last day before the deadline [2], or just have difficulties in

scheduling too many things [3], [4].

An appropriate schedule will help the individual improve the

utility of finished jobs (or tasks) [5]. This is also demonstrated

by the well-known MIT experiment [6]: there are three papers

to be written over a 12-week-long course. Two groups of

students are tested with different schedules, where the first

one is required to submit the paper by the end of the last

week, while the second one has evenly spaced deadlines, i.e.,
the fourth, eighth, and twelfth weeks. As we expect, the final

results indicate that most students in the first group start to

write all three papers in the last four weeks, and they get

worse grades than those in the second group.

However, it is hard to obtain such a schedule. For one thing,

the individual often encounters many jobs with different re-

lease times and deadlines, such as the assignments required by

many courses. The intrinsic relationship among the available

time periods of jobs makes it hard to say some heuristic ideas

(like evenly spaced deadlines in the MIT experiment) can be

used to generate the schedule. For another, since we assign

jobs to a human, the utility of scheduled jobs will definitely

be affected by a heavy workload. As shown in the experiment

about proofreading papers [6], the number of errors detected

by people who do the jobs in a rush are larger than the average.

Therefore, naive approaches such as scheduling as many jobs

as we can may not always improve the overall utility.

In real scenario, it may be the case that we do not know

the details of all the jobs beforehand; we may be only

aware of some of them in any period and they appear in an

online fashion, which further hinders producing an appropriate

schedule. Recent studies consider different constraints [7], [8],

[9], [10], [11], [12], [13]. It is worth noting that in their

assignment process, the utility values of new scheduled jobs

are not affected by the current assignment, in contrast to our

dynamic values.

II. PROBLEM STATEMENT

In this section, we define the Procrastination-aware
Scheduling Problem (PSP), provide the bipartite graph for-

mulation, and discuss its hardness.

A. Problem Definitions

There are T time periods in total. In the beginning, we are

notified of a set of jobs J .

Definition 1 (Job): Each job j ∈ J has its release time

rj ∈ {1, . . . , T} and deadline dj ∈ {rj , . . . , T}. It requires

some individual to take cost cj to finish it and we can gain a

share of utility uj if it is not done in a rush.

We assume large jobs have been decomposed into small

ones such that each job j can be done in any one period t ∈
{rj , . . . , dj} and incurs the one-time cost cj . As an example,

we can imagine the cost takes several hours, and the time

period may last three days or a week or longer. For the utility,

it can represent the credits of an assignment in a course, or

the payments of a task if it is well done by the individual.

There exists one individual who suffers from certain degree

of procrastination, and she may delay these jobs until the

deadlines. We have to schedule these jobs to overcome her

laziness and maximize the utility.
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Definition 2 (Schedule): For each time period t, we force

the individual to finish our schedule St ⊆ J but assume an

upper limit Ct specifying the maximum total cost of jobs we

can assign to her (i.e.,
∑

j∈St cj ≤ Ct). To carry out the

enforcement, we may adopt some coercive measures like not

presenting the real deadline.
Definition 3 (Utility function): Since the total utility may

be affected as we schedule more jobs in a single period, we

assume a utility function U(St) on any schedule St ⊆ J which

is of a wide class called submodular function; for any S, S′ ⊆
J such that S ⊆ S′ and any j ∈ J\S′, it satisfies U(S ∪
{j})−U(S) ≥ U(S′∪{j})−U(S′), indicating that with more

jobs crowded in a single period, the marginal utility should be

smaller, also known as the diminishing returns. Assume also

it is a monotonically non-decreasing function; for any S ⊆ S′,
U(S) ≤ U(S′).

Note that we support any monotone submodular functions,

including, but not limited to, the linear sum or the budget-

additive functions. The specifications of the functions depend

on the individual. The discussion is deferred and for now we

just assume there exists a function oracle which outputs the

value if we input a set of jobs.
Now we formally propose the Procrastination-aware

Scheduling Problem (PSP).
Definition 4 (PSP): Given a set of jobs J , we need to make

an assignment for jobs A = (S1, . . . , ST ) (i.e., the schedule

for each t) so as to maximize the total utility value U(A) =∑
t U(St), while satisfying the following constraints.

• Each job j can only be done once; if j ∈ St for some t,
then j /∈ St′ for any t′ �= t.

• Each job j can only be done when it is available; if j ∈ St

for some t, then rj ≤ t ≤ dj .

• For schedule St, the costs of assigned jobs should not

exceed the upper limit;
∑

j∈St cj ≤ Ct.

• The utility functions U(St) are monotone submodular

functions on any set St ⊆ J .

Graph formulation. It is helpful if we imagine all these

concepts on a bipartite graph G = (J, {1, . . . , T}, E), where

jobs and time periods are represented by nodes. For each edge

(j, t) ∈ E, it indicates that job j can be done in period t.
Therefore, for each job j, there are edges (j, rj), . . . , (j, dj) ∈
E. Let δ(j) and δ(t) denote the set of edges incident to j and

t, respectively. Let N(j) and N(t) denote their corresponding

neighbors. Each job j is also associated with its cost cj and

utility uj .
A feasible bipartite matching M is a subset of edges such

that no pair of edges in M share a node j ∈ J , and for any

node t,
∑

(j,t)∈δ(t)∩M cj ≤ Ct. We can rewrite St = {j ∈ J :
(j, t) ∈ M}, and the problem is to find a feasible matching

which maximizes the total utility
∑

t U(St).
Note that our bipartite graph is dynamic; that is, the utility

of adding a new job into some schedule St depends on the

current matching. However, in traditional bipartite matching,

the utility values of all the edges are fixed and the objective

function can be represented by the sum of utility values of

edges.

0 4 8 12 Week #

Paper 1 Paper 2 Paper 3

Period 1 Period 2 Period 3
Fig. 1: Bipartite graph of the MIT experiment.

Hardness. Since the submodular functions include the

linear ones (e.g., U(S) =
∑

j∈S uj), our problem generalizes

the Multiple Knapsack problem with Assignment Restrictions

(MKAR) [14], which uses the linear utility function. Besides,

it requires that for any j, each uj equals cj . As it is proved

NP-hard in the strong sense, we have the following theorem.

Theorem 1: PSP is strongly NP-hard.

III. SOLUTIONS FOR PSP

In this section, we first present a heuristic idea with poor

performance, then propose our OffPSP algorithm.

Abusing notations slightly, in the following we may use

c(j) = cj , c(S) =
∑

j∈S cj for S ⊆ J , and c(A) =
∑

t c(S
t)

for any assignment.

A. Heuristic

Maybe the most natural idea is the greedy algorithm: in each

round, we schedule the “best” available job to some period t.
A heuristic for the best one is to choose the job-period pair that

gives us the most bang for the buck; that is, the pair (j, t) that

maximizes the ratio of the increase for the objective function U

to the cost cj : argmax(j,t)∈E′
U(St∪{j})−U(St)

cj
. If the current

schedule is St, the increase would be U(St ∪ {j}) − U(St).
And all the constraints are satisfied if we maintain a set of

feasible edges, denoted by E′. Ties are broken by choosing the

pair (j, t) with the largest Ct− c(St), since this will gives us

a larger room for the rest of the jobs. The scheduling process

stops when there is no edges in E′ which can improve the

utility.

However, we claim that in certain circumstances the per-

formance of this heuristic can be arbitrarily bad. The idea is

based on [15]. Imagine two jobs can be assigned to just one

period.The first one has the cost 40 and utility 40, while the

second one has the cost ε and utility 2ε. If ε is infinitesimal,

we gain a small utility value 2ε since only the second job can

be scheduled. However, the optimal solution is 40, and the

ratio can be arbitrarily small.

B. OffPSP Algorithm

The heuristic may mislead us to a locally optimal solution

without any performance guarantee. This motivates us to

propose the OffPSP algorithm. As the example suggests, a

job-period pair (j, t) which maximizes the ratio can be the

one that gives very little increase to the utility function if the
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Algorithm 1: OffPSP

input : Bipartite graph G = (J, {1, . . . , T}, E), Utility

functions U
output: Assignment A = (S1, . . . , ST )

1 E′ ← E;

2 i← 1;

3 foreach t ∈ {1, . . . , T} do
4 St

0 ← ∅;
5 A0 ← (S1

0 , . . . , S
T
0 );

6 while E′ �= ∅ do
7 (ji, t)← argmax(j,t)∈E′

U(St
i−1∪{j})−U(St

i−1)

cj
;

8 St
i ← St

i−1 ∪ {ji};
9 E′ ← E′\δ(ji);

10 if c(St
i ) > Ct then

11 E′ ← E′\δ(t);
12 i← i+ 1;

13 foreach t ∈ {1, . . . , T} do
14 if c(St

i ) > Ct then
15 Let j be the last job scheduled into period t;
16 if U({j}) > U(Si

t\{j}) then
17 Si

t ← {j};
18 else
19 Si

t ← Si
t\{j};

20 return A← (S1
i , . . . , S

T
i );

cost cj is small. An intuition is to ensure that we schedule

jobs with enough costs.

The basic idea is as follows. We still choose the pair which

has the most bang for the buck. However, this time we will

first make a pseudo-assignment which may be infeasible for

the upper limit; we allow adding job j to St if it is the first

time we exceed the upper limit, i.e., c(St ∪ {j}) > Ct. Note

that the pseudo-assignment guarantees that the sum of costs

in the pseudo-schedule is greater than Ct and hence a larger

increase for the utility values. In the final step, we make the

pseudo-assignment feasible while not losing much utility. We

check each infeasible schedule: we compare the last job with

the rest and retain the one with larger utility.

Algorithm 1 illustrates the main procedure. In lines 1-5, we

initialize the schedule and the set of feasible edges E′. Note

that the subscript i is used to denote the ith iteration, which is

convenient for the analysis. In lines 6-12, we iteratively find

the pair with the largest ratio among all feasible edges. The

difference is that we make a pseudo-assignment where we do

not consider period t any more only the first time when c(St)
exceed the upper limit Ct (in lines 10-11). In lines 13-19, we

adjust each infeasible schedule to satisfy the constraints. If the

utility of the last job is greater than that of the rest of jobs,

we retain the last job (in lines 16-17), otherwise we discard it

(in lines 18-19).

Implementation. In practice, we first find for each t its

TABLE I: Real datasets

Factor Setting

#courses 2, 4, 6, 8, 10

Ct 2, 4, 6, 8, 10

best job among all its available neighbors, then compare those

best jobs to get the best pair (j, t). For the second step, we can

always maintain a max-heap to speed up our comparison. Note

that there is no need to use such heap for the first step, because

we have to update all the increases for all t’s neighbors once

a job is added to St. After a job-period pair (ji, t) has been

scheduled, we mark the job ji and ignore all the pairs incident

to ji in the heap.

Complexity analysis. In practice, we first find for each t
its best job among all its available neighbors, then compare

those best jobs to get the best pair (j, t). For the second

step, we can always maintain a max-heap to speed up our

comparison. For the initialization of the max-heap, we need

to compute the increase for each edge in O(|E|) and add those

best jobs to the max-heap in O(T log T ). The maximum size

of the heap can be |E| since we never remove the elements.

Each time we choose from the max-heap the best pair in

O(log |E|) and there are at most |E| iterations, the loop in

lines 6-12 needs O(|E| log |E|) time. Checking the pseudo-

assignment in lines 13-19 takes O(T ). Hence, the total time

cost is O(|E| log |E|).
IV. EXPERIMENTAL STUDY

A. Real datasets.

We use the data published in KDD CUP 2015 from

XuetangX, one of the largest MOOC platforms in China. It

contains the records of courses from October 30 2013 to

August 1 2014 and the students who enrolled in them. As

our algorithms are designed for one individual, we extract for

each student its own enrollment. We observe that the maximum

number of courses someone enrolls in reaches 27, verifying

the necessity of an elaborate schedule. In our settings, one

time period lasts one day, so their numbers of periods may be

different. Each course consists of many modules, e.g., video,

problem, discussion. We regard them as jobs and associate

them with corresponding costs and utility values. We vary

the number of courses #courses that somebody enrolls in

and the upper limit Ct, the settings of which are showed

in Table I. We randomly select the student who satisfies the

setting and extract the corresponding dataset. As the other

parameters vary with the datasets, we do not show them due

to limited space. We also test the algorithms on the datasets

of the MOOC platform of Beihang University, which opens

to the undergraduates. As the results show a similar pattern to

those on the XuetangX datasets, we omit them here.

B. Compared algorithms.

Apart from our proposed approaches, we compare the state-

of-art algorithm for task assignment as a baseline [7], called

TGOA. We also test the performance of the “Procrastinator”.
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Fig. 2: Results on real data

For the synthetic data, we simulate a procrastinator who does

the job j with higher probability as t is close to the deadline dj .

For the real case, we directly examine the log of the student,

since it includes all the records of jobs (modules) done by her

in each day.

For the submodular utility functions, we consider two types.

The first one is budget-additive: US(j) = uj if
∑

j∈S uj < B
and 0 otherwise. where the utility of the jobs are all zeros if the

total sum has reached the budget B. The second one is more

continuous, indicating that the new job will be affected more

as the number of scheduled jobs becomes greater: US(j) =
uj − α|S|, where α represents the degree of how the number

of currently scheduled jobs S affects utility. The algorithm

which uses these two functions are suffixed with “-B” and

“-C”. We also test a variant of the algorithm called OnPSP

under online scenario, where tasks are revealed in an online

fashion. As TGOA runs 20x slower and basically consumes

two times memory than the other algorithms, we omit its time

costs.

C. Experiment Results

As stated in the setup of real datasets, we vary the number

of courses which some student enrolls in and the upper limit

of each time period, the results of which are showed in the

last two column of Fig. 2. For the number of courses, it is

worth noting that a large number does not indicate more jobs,

because some courses have many jobs (or modules), whereas

others have few, and the students may enroll in different

courses. For both two types of functions, OffPSP achieves

the largest utility values, and OnPSP performs better than the

students’ own schedules, which are affected by certain degree

of procrastination. Though TGOA achieves moderate values, it

incurs large time and space costs and hence inapplicable. For

the running time, since the upper limit is small, OnPSP with

its complexity O(|J t|Ct) may run faster than OffPSP. Similar

results can be observed in varying the upper limit Ct,
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